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Abstract

Non-linear equations can be used to model the measured potential of ion-selective electrodes (ISEs) as a function of time. This can be done
by using non-linear least squares regression to fit parameters of non-linear equations to an ISE response curve. In iterative non-linear least
squares regression (which can be considered as local optimisers), the determination of starting parameter estimates that yield convergence to
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he global optimum can be difficult. Starting values away from the global optimum can lead to either abortive divergence or conver
ocal optimum. To address this issue, a global optimisation technique was used to find initial parameter estimates near the global o
ubsequent further refinement to the absolute optimum. A genetic algorithm has been applied to two non-linear equations relating th
otential from selected ISEs to time. The parameter estimates found from the genetic algorithm were used as starting values fo

east squares regression, and subsequent refinement to the absolute optimum. This approach was successfully used for both exp
easured data from three different ISEs; namely, calcium, chloride and lead ISEs.
2005 Elsevier B.V. All rights reserved.

eywords: Ion-selective electrodes; Genetic algorithms; Non-linear regression; Equilibrium potential; Estimation; Hybrid

. Introduction

Measurements with ion-selective electrodes (ISEs) are
enerally made by allowing the equilibrium potential (Eeq)

o be established. In some cases, the time required to do so
an be quite lengthy. An alternative approach has been to
se an extrapolation procedure to estimateEeq. This can be
one by sampling a small portion of the response curve and
pplying linear regression to transformations of the empirical
elationships between the measured potential and time[1–6].
ne such empirical model was first reported by Buffle and
oworkers[7,8] and relates the measured potential,E, with
ime, t, by

= Eeq + 1/(At + B) (1)

hereA andB are the empirical constants.
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While the use of linear least squares regression on t
formed linear equations is simple and straightforward, it
not be statistically valid since the original error structures
be altered, which can introduce inaccuracies into the pa
eter estimates[9]. This can be overcome by using non-lin
regression with the original equations such as Eq.(1). This
approach has been done for estimating the equilibrium p
tial for a solid-state lead ISE[10].

In addition to Eq.(1), another empirical model that can
used is

E = Eeq + de−kt (2)

where d and k are empirical constants. This model w
first suggested by exploratory data analysis of the resp
curve for the lead ISE[10]. Non-linear regression thou
requires reliable estimation of the initial parameters. O
erwise, convergence to the global optimum may no
achieved. Genetic algorithms are capable of providing in
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parameter estimates[11] that, with further refinement by non-
linear regression, can be used to model the equilibrium poten-
tial for an ISE. GAs have been used to find initial parameter
estimates for non-linear regression of immittance data[12],
and to fit non-linear models for electrochemical impedance
spectroscopy[13]. We report on the use of this approach for
the calcium, chloride and lead ISEs.

1.1. Genetic algorithms

The application of genetic algorithms (GAs) to problems
in chemistry and science has only recently been under-
taken. Interest in evolutionary algorithms began with the
work of Rechenberg[14] and Holland[15] but their early
application was limited due to the fact that GAs are com-
putationally intensive. Often thousands, if not millions, of
evaluations of the objective function are required to define
the fitness of members of the GA. It is only with recent
advances in computing power that the use of GAs has become
feasible.

Genetic or evolutionary algorithms are a class of adap-
tive optimisation techniques based on Darwinian principles
of natural selection and survival of the fittest. Candidate solu-

tions in GAs, in this case estimates for the parameters of Eq.
(1) or (2), need to be encoded as strings of numbers, namely
a Gray coded bit string; many other alternate binary or deci-
mal codings are also possible. The fitness, or goodness of fit,
for a set of parameters is estimated as the sum of the squares
of the residuals; i.e. the sum of the squares of the difference
between the measured and calculated ISE data. Thus, the
lower the sum of the squares the better the fit of the solution.
A set of candidate solutions is called a population and thei-th
population within the genetic algorithm will be represented
asPi.

A flow diagram outlining the details of the implemented
genetic algorithm is given inFig. 1. A more detailed descrip-
tion of the implementation has been given elsewhere[16] in
regard to the application of the GA to the determination of
kinetic model parameters. In this case, the implementation is
identical except that the objective function is either Eq.(1)
or (2).

In summary, the steps taken in the genetic algorithm are
as follows:

Setup: Load the ISE data and define the equation. Define
the genetic algorithm’s operational parameters (parameter
Fig. 1. Flow diagram of th
e genetic algorithm.
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ranges, bit string length (I), population size (n), maximum
number of generations (g) and mutation rate).
Initialisaton: Create the first generationP1 of the genetic
algorithm by randomly generating a set ofn candidate solu-
tions within their defined range.
Selection: Apply a selection method to the current genera-
tion to select candidate solutions for inclusion into a breed-
ing population. There are many different strategies for this
selection process and they all need to ensure that the fitter
candidates are more likely to be included into the breeding
population, but still allow exploration of large areas of the
parameter space. In this case the elitist selection method was
chosen:n individuals are selected for inclusion in the breed-
ing populationPB

i . An individual may be selected multiple
times. First, the fittest half ofPi is inserted intoPB

i . The
remainingn/2 spaces inPB

i are filled by tournament selec-
tion, where two individuals are randomly selected from the
original, completePi. Seventy-five percent of the time the
fitter individual is placed inPB

i , and 25% of the time the less
fit individual is chosen. These procedures enforce a strong
preference for the ‘good’ members of the population, but it
also allows ‘bad’ members to ‘survive’.
Crossover and mutation: Crossover is applied to the breed-
ing population. It involves first randomly selecting two can-
didate solutions from the breeding population. The strings
of these candidate solutions are then combined in some way
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by providing random disruption so different regions of the
solution space will be explored.
Replacement: The process of crossover and mutation is
repeated until the required numbern of new candidate solu-
tions has been created and the fitness of each new solution
is evaluated. The new solutions are then combined with the
current generation producing a population of 2n. The fittest
n solutions are kept and make up the next generation, the rest
are discarded. The process of selection through to replace-
ment is then applied to the new generation and so on.
Termination: The genetic algorithm terminates if the maxi-
mum number of generations is reached or it has converged
to a particular solution.

2. Experimental

Lead nitrate, calcium nitrate and potassium chloride were
used for standard preparation and were of analytical grade.
The standard solutions were prepared with deionised water.
The lead measurements were made with an Orion lead solid-
state (94–82) ion-selective electrode with a double junction
sleeve type electrode (90–02) as the reference. The ionic
strength of the lead standard solutions was adjusted with
5 M ammonium nitrate. The cell potential was measured with
an Orion EA940 ion analyser at 0.25 min intervals by hand.
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to produce a new candidate solution that retains aspe
both parent strings. The type of crossover implemented
half-uniform crossover where the bits at each location o
selected pair of strings are compared. If the bit at a par
lar location is the same in both strings it is kept intact. If
bit differs a new bit is taken from either string with eq
probability. This is illustrated inFig. 2.

Mutation is then applied to each new solution resul
from crossover. Each element within the new solution s
may randomly change with some given probability (u
ally less than 10%). Mutation was implemented so th
decreases linearly with the number of generations. M
tion helps prevent premature convergence of the algo

Fig. 2. Half-uniform crossover.
he chloride measurements were made with an Orion
ide combination electrode (9617BN) with an Orion 42
eter. The ionic strength of the chloride standard solu
as adjusted with 5 M sodium nitrate. The calcium meas
ents were made with a Radiometer calcium (ISE-K-

SE interfaced to a PHM93 meter with a double junc
leeve type electrode (Radiometer REF251) as the refer
he ionic strength of the calcium standard solutions
djusted with 5 M potassium chloride. Ammonium nitr
10%) solution was used in the outer chamber of the r
nce electrodes. Measurements were made according
anufacturer’s instructions at room temperature and w
ut stirring. Between each measurement, the electrodes
insed with distilled water and blotted dry with a tissue.
ata was collated in an Excel spreadsheet and estimat

he non-linear parameters were calculated using the ge
lgorithm. An outline of the algorithm is given inFig. 1. The
A was coded using C++ and details of the implementa

an be found elsewhere[16]. The calculated values from t
enetic algorithm were used as starting estimates for

inear least square regression of Eqs.(1) and (2). Non-linea
egression was performed using the “nls” command wit
n open-source implementation of the S statistical lang

17].

. Results and discussion

The GA was run three times to calculate estimates fo
arameters of Eqs.(1) and (2)with response data for a le
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Table 1
Calculated parameter estimates by genetic algorithm, non-linear regression and bootstrap simulation for Eqs.(1) and (2)for a lead ion-selective electrode

pPb Genetic algorithm Iterative non-linear regression Iteration Bootstrapb

ECB A B ECB Aa B ECB A B

Eq.(1)
2 −139.3 0.086 0.3846 −139.2± 0.1 0.01± 0.01 0.40± 0.01 4 −139.13± 0.11 0.13± 0.06 0.38± 0.17
3 −163.8 6.12–6.36 0.002* −166.3± 0.1 0.05± 0.01 0.30± 0.01 13 −165.64± 0.08 0.11± 0.02 0.32± 0.02
4 −192.6 7.43 0.002-0.005 −193.8± 0.1 0.18± 0.02 0.44± 0.01 11 −194.09± 0.22 0.10± 0.05 0.47± 0.04

pPb Genetic algorithm Iterative non-linear regression Iteration Bootstrapb

ECE d k ECE d k ECE d k

Eq.(2)
2 −139.3 2.39 0.13 −138.6± 0.03 1.84± 0.03 0.27± 0.02 9 −138.71± 0.34 1.85± 0.34 0.23± 0.04
3 −163.8 1.19–1.27 1.22–1.27 −165.2± 0.05 2.31± 0.04 0.19± 0.01 6 −165.16± 0.07 2.23± 0.04 0.24± 0.04
4 −192.6 1.0–27.0 2.24–32.64 −193.5± 0.05 1.69± 0.05 0.34± 0.03 6 −193.74± 0.26 1.56± 0.19 0.17± 0.08

a ±Calculated standard error.
b Bootstrap estimates taken from[10].

ISE immersed in standard solutions.Table 1shows the range
of the parameter estimates obtained from the GA. Note a sin-
gle entry inTable 1for the GA value means that the same
result was found with each run. These estimates were then
used as starting values for iterative non-linear least squares
regression. The calculated non-linear least square parame-
ter estimates for Eqs.(1) and (2)are also shown inTable 1.
Note that the calculatedEeq is denoted asECB for Eq. (1)
andECE for Eq.(2). For Eq.(1), the GA parameter estimates
are well within a factor of those found with non-linear least
squares regression. The parameter estimates from bootstrap
simulations are also shown inTable 1. Bootstrap simula-
tions were used to determine the standard error estimates for
the non-linear least square parameters for Eq.(1). Bootstrap
methods are computer intensive statistical tools that provide
uncertainties for the parameter estimates[18,19]by random
sampling of the experimental data, over a large number of
times. The non-linear least square parameter estimates are in
close agreement with those from the bootstrapping simula-
tions. The number of iterations required to reach convergence
is reasonably modest where the maximum number of itera-
tions was 13 for the 10−3 M standard solution. Thus, the use
of the GA values as starting guesses to the iterative algorithm
provided good non-linear parameter estimates that converged
quite quickly. The same result is found for Eq.(2) where
the GA parameter estimates are reasonably close to those
c ra-
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The genetic algorithm was applied to response data from
calcium and chloride immersed in standard solutions (ISEs)
in order to find parameter estimates for Eqs.(1) and (2).
Table 2shows the parameter estimates found by the GA and
those calculated by non-linear least squares regression for
the calcium ISE. Bootstrap simulated estimations were only
performed for Eq.(1) parameter estimates. As with the lead
ISE, the GA estimates for Eq.(1) for the calcium ISE are
well within a decade of order with the non-linear least square
estimates and those found from the bootstrap simulations.
Similar agreement is also found for the estimates for Eq.(2).
The results for the chloride ISE are shown inTable 3. Except
for the pCl 2.7 data, the GA estimates for Eq.(1) compare
quite well to the non-linear least square estimates. This is also
the case for the parameter estimates of Eq.(2). In contrast,
there are differences between the GA estimates and those
found by non-linear regression for the pCl 2.7 data. The stan-
dard errors for the parameter estimates of Eqs.(1) and (2)
for this data are also quite large. Inspection of the response
curve (not shown) showed that the electrode had reached the
equilibrium potential quite quickly and had not responded

F d
p

alculated with non-linear regression. Additionally, the ite
ive algorithm converged more rapidly to the global optim
here the maximum number of iterations required was 9
ith Eq. (1), the final non-linear least square estimates
ompare very favourably with the bootstrap simulated d
ig. 3shows the plot of expected values from each equa
ith the experimental data for the lead ISE immersed
0−4 M standard solution. The expected values were ca

ated using the parameter estimates shown inTable 1. A good
t of the response curve was found with both Eqs.(1) and
2) with only a difference of 0.1 mV between each predic
urve.
ig. 3. Plot of expected values from Eqs.(1) and (2)with the measure
otential for a lead ISE immersed in 10−4 M standard solution.
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Table 2
Calculated parameter estimates by genetic algorithm, non-linear regression and bootstrap simulation for Eqs.(1) and (2)for a calcium ion-selective electrode

pCa Genetic algorithm Iterative non-linear regression Bootstrap

ECB A B ECB A B ECB A B

Eq.(1)
2 118.5 0.22–0.26 0.002 120.2± 0.1 2.29± 0.15 −0.50± 0.04 120.4± 0.1 2.83± 0.07 −0.63± 0.17
3 147.0 0.1–0.11 0.21–0.22 147.5± 0.1 0.21± 0.01 0.21± 0.01 147.6± 0.3 0.22± 0.06 0.20± 0.01
4 172.9 0.030–0.036 0.15–0.16 175.0± 0.2 0.17± 0.03 0.17± 0.01 174.9± 0.7 0.13± 0.05 0.12± 0.01

pCa Genetic algorithm Iterative non-linear regression

ECE d k ECE d k

Eq.(2)
2 121.7–121.8 421.3–873.3 12.5–15.9 120.4± 0.1 289.0± 46.8 10.8± 0.8
3 147.0 0.37–3.45 0.16–0.17 148.1± 0.1 3.61± 0.13 0.53± 0.04
4 168.3–177.6 4.91–9.89 0.04–1.83 175.7± 0.1 4.46± 0.25 0.59± 0.06

in a way such as shown inFig. 3. Thus, the likely cause for
this seemingly poor result would be due to a lack of fit of
the equations to the pCl 2.7 data. In addition, there are also
differences between the calculatedECB andECE values for
the pCl 3.2 data (approximately 10 mV). The reason for this
is unclear. Nevertheless, the GA provided very good initial
parameter estimates that were used for non-linear regression
of Eqs.(1) and (2)applied to the response data of three dif-
ferent ISEs. It is likely that this approach could be used with
other ISEs but this would need to be verified.

Fig. 4 shows the performance of the genetic algorithm
for three independent runs using the response data of the cal-
cium ISE immersed in 10−3 M standard solution. The genetic
algorithm was run using the following settings:

• parameter range of 0.001–1000 (with a logarithmic scale),
• generation size ofn = 50 with a maximum ofg = 100 gen-

erations,
• encoding ofl = 9 bits resolution per parameter,
• mutation rate of 5%.

Plots are given for Eqs.(1) and (2). The plots show the
sum of squares (or ‘fitness’) of the fittest member of each
generation, the mean sum of squares for each generation

and the sum of squares of the absolute optimum. It is worth
noting that the sum of squares of the absolute optimum
can never be achieved by the GA due to the discretisation
of the parameter values to allow their representation as a
binary string. The plots show the GA performed well with
convergence to a near optimal set of parameter estimates
within the defined maximum number of generations. It can
also be seen that the algorithm performed slightly differently
with each run. This highlights the probabilistic nature of the
approach.

The maximum run time for the GA was approximately
two minutes on a 3 GHz Pentium 4 processor. This is sig-
nificantly more then a single run for the local optimiser, due
to the large number of evaluations of the objective function.
However, the benefit of using the GA becomes clear when
consideration of the quality of the initial guesses provided to
the local optimiser is taken into account. Much more time then
a few minutes can be spent when manually trying to determine
initial parameter estimates for the local optimiser that result
in successful convergence to the global optimum. For exam-
ple, using initial parameter estimates ofEeq=−192.6,d = 0.1
(one-tenth of the GA value) andk = 2.24 for Eq.(2), applied
to the 10−4 M Pb ISE response data, results in failure of the

Table 3
C regress

p

E
1

4

p

E
1.27
0.76
alculated parameter estimates by genetic algorithm and non-linear

Cl Genetic algorithm

ECB A B

q.(1)
3.7 132.0 −0.16 to−0.25 −0.01 to−0.0
3.2 75.0 −0.039 −0.013
2.7 93.5 2.02 to 3.45 −0.01 to−0.4

Cl Genetic algorithm

ECE d k

q.(2)
3.7 132.0 −16.77 1.16 to
3.2 75.0 −37.18 to−51.48 0.50 to
2.7 91.4 2.1 0
ion for Eqs.(1) and (2)for a chloride ion-selective electrode

Iterative non-linear regression

ECB A B

132.2± 0.25 −0.21± 0.02 −0.013± 0.01
90.4± 1.5 −0.011± 0.001 −0.015± 0.01
93.5± 0.1 85.1± 598 −20.65± 149.5

Iterative non-linear regression

ECE d k

130.6± 0.3 −21.67± 2.40 2.08± 0.29
79.3± 0.4 −52.9± 0.70 0.59± 0.02
93.5± 0.1 9.01± 9.15 6.85± 3.92
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Fig. 4. Genetic algorithm performance plots for the 10−3 M calcium ISE response for three independent runs of the genetic algorithm for Eqs.(1) and (2).

local optimizer. The GA though provided initial parameter
estimates, which quickly converged to the global optimum.
Considerable time savings can be achieved with use of the
GA compared to a user trying to find new initial estimates
that result in convergence.

4. Conclusion

We have applied a GA to estimate parameters of empirical
models for the response curve of a lead, calcium and chloride
ISE. The algorithm gave results which were quite close to (if
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not within an order of magnitude of) non-linear least square
calculated estimates. The GA results were used as initial esti-
mates for non-linear least square regression that converged
quite quickly to the global optimum. This approach would be
quite applicable to the responses for other types of ISEs as
no assumption is made on the response of the ion-selective
electrode. Additionally, a GA can be applied to other appli-
cations where non-linear regression is needed. GAs can yield
estimates, which are close to the global optimum and so allow
quick convergence to the final solution set.
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