Available online at www.sciencedirect.com

scrence @ pineer: Talanta

R Talanta 68 (2006) 13361342

ELSEVIE

55

www.elsevier.com/locate/talanta

A hybrid genetic algorithm for estimating the equilibrium
potential of an ion-selective electrode

Peter Watkin&*, Graeme Puxty

& CSIRO Food Science Australia, Private Bag 16, Werribee 3030, Australia
b Institute for Chemistry and Bioengineering, Safety and Environmental Technology Group,
ETH-Honggerberg HCI 130, CH-8093 Zurich, Switzerland

Received 28 April 2005; received in revised form 25 July 2005; accepted 25 July 2005
Available online 29 August 2005

Abstract

Non-linear equations can be used to model the measured potential of ion-selective electrodes (ISEs) as a function of time. This can be dor
by using non-linear least squares regression to fit parameters of non-linear equations to an ISE response curve. In iterative non-linear lea
squares regression (which can be considered as local optimisers), the determination of starting parameter estimates that yield convergence
the global optimum can be difficult. Starting values away from the global optimum can lead to either abortive divergence or convergence to &
local optimum. To address this issue, a global optimisation technique was used to find initial parameter estimates near the global optimum fo
subsequent further refinement to the absolute optimum. A genetic algorithm has been applied to two non-linear equations relating the measurt
potential from selected ISEs to time. The parameter estimates found from the genetic algorithm were used as starting values for non-linee
least squares regression, and subsequent refinement to the absolute optimum. This approach was successfully used for both expressions \
measured data from three different ISEs; namely, calcium, chloride and lead ISEs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction While the use of linear least squares regression on trans-
formed linear equations is simple and straightforward, it may

Measurements with ion-selective electrodes (ISEs) are not be statistically valid since the original error structures can

generally made by allowing the equilibrium potentiakgF be altered, which can introduce inaccuracies into the param-

to be established. In some cases, the time required to do sceter estimatefd]. This can be overcome by using non-linear

can be quite lengthy. An alternative approach has been toregression with the original equations such as #g. This

use an extrapolation procedure to estimégg This can be approach has been done for estimating the equilibrium poten-

done by sampling a small portion of the response curve andtial for a solid-state lead ISE.0].

applying linear regression to transformations of the empirical  In addition to Eq(1), another empirical model that can be

relationships between the measured potential and[fir&]. used is
One such empirical model was first reported by Buffle and
coworkers[7,8] and relates the measured potentialwith E = Eeq+de™™ (2)
time, 1, by o g I ] del
where d and k are empirical constants. This model was
E = Eeq+1/(Ar+ B) @ first suggested by exploratory data analysis of the response
whereA andB are the empirical constants. curve for the lead ISE10]. Non-linear regression though
requires reliable estimation of the initial parameters. Oth-
* Corresponding author. Tel.: +613 97313467 fax: +613 97313250,  €rwise, convergence to the global optimum may not be
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parameter estimatgkl] that, with further refinementby non-  tions in GAs, in this case estimates for the parameters of Eq.
linear regression, can be used to model the equilibrium poten-(1) or (2), need to be encoded as strings of numbers, namely
tial for an ISE. GAs have been used to find initial parameter a Gray coded bit string; many other alternate binary or deci-
estimates for non-linear regression of immittance ¢ia23, mal codings are also possible. The fithess, or goodness of fit,
and to fit non-linear models for electrochemical impedance for a set of parameters is estimated as the sum of the squares
spectroscopyl3]. We report on the use of this approach for of the residuals; i.e. the sum of the squares of the difference

the calcium, chloride and lead ISEs. between the measured and calculated ISE data. Thus, the
lower the sum of the squares the better the fit of the solution.
1.1. Genetic algorithms A set of candidate solutions is called a population and-the

population within the genetic algorithm will be represented

The application of genetic algorithms (GAs) to problems asp;.
in chemistry and science has only recently been under- A flow diagram outlining the details of the implemented
taken. Interest in evolutionary algorithms began with the genetic algorithm is given iRig. 1. A more detailed descrip-
work of Rechenbergl4] and Holland[15] but their early ~tion of the implementation has been given elsewligéin
application was limited due to the fact that GAs are com- regard to the application of the GA to the determination of
putationally intensive. Often thousands, if not millions, of kinetic model parameters. In this case, the implementation is
evaluations of the objective function are required to define identical except that the objective function is either Ex).
the fithess of members of the GA. It is only with recent or(2).
advances in computing power that the use of GAs has become  In summary, the steps taken in the genetic algorithm are
feasible. as follows:

Genetic or evolutionary algorithms are a class of adap-
tive optimisation techniques based on Darwinian principles Setrup: Load the ISE data and define the equation. Define
of natural selection and survival of the fittest. Candidate solu- the genetic algorithm’s operational parameters (parameter

Fig. 1. Flow diagram of the genetic algorithm.
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ranges, bit string length (I), population size (n), maximum by providing random disruption so different regions of the

number of generations (g) and mutation rate). solution space will be explored.

Initialisaton: Create the first generatiaPy of the genetic Replacement. The process of crossover and mutation is
algorithm by randomly generating a setxafandidate solu- repeated until the required numbeof new candidate solu-
tions within their defined range. tions has been created and the fitness of each new solution

Selection: Apply a selection method to the current genera- is evaluated. The new solutions are then combined with the
tion to select candidate solutions for inclusion into a breed- current generation producing a population of 2n. The fittest
ing population. There are many different strategies for this n solutions are keptand make up the next generation, the rest
selection process and they all need to ensure that the fitter are discarded. The process of selection through to replace-
candidates are more likely to be included into the breeding ment is then applied to the new generation and so on.
population, but still allow exploration of large areas of the  Termination: The genetic algorithm terminates if the maxi-
parameter space. In this case the elitist selection method was mum number of generations is reached or it has converged
chosennindividuals are selected for inclusion in the breed-  to a particular solution.
ing populationP2. An individual may be selected multiple
times. First, the fittest half aP; is inserted intoPP. The
remainingn/2 spaces irPl.B are filled by tournament selec- 2. Experimental
tion, where two individuals are randomly selected from the
original, completeP;. Seventy-five percent of the time the Lead nitrate, calcium nitrate and potassium chloride were
fitter individual is placed irPiB, and 25% of thetime the less  used for standard preparation and were of analytical grade.
fit individual is chosen. These procedures enforce a strong The standard solutions were prepared with deionised water.
preference for the ‘good’ members of the population, but it The lead measurements were made with an Orion lead solid-
also allows ‘bad’ members to ‘survive'. state (94—-82) ion-selective electrode with a double junction
Crossover and mutation: Crossover is applied to the breed- sleeve type electrode (90-02) as the reference. The ionic
ing population. It involves first randomly selecting two can- strength of the lead standard solutions was adjusted with
didate solutions from the breeding population. The strings 5 M ammonium nitrate. The cell potential was measured with
of these candidate solutions are then combined in some wayan Orion EA940 ion analyser at 0.25 min intervals by hand.
to produce a new candidate solution that retains aspects ofThe chloride measurements were made with an Orion chlo-
both parent strings. The type of crossover implemented wasride combination electrode (9617BN) with an Orion 420A
half-uniform crossover where the bits at each location of the meter. The ionic strength of the chloride standard solutions
selected pair of strings are compared. If the bit at a particu- was adjusted with 5 M sodium nitrate. The calcium measure-
lar location is the same in both strings it is kept intact. If the ments were made with a Radiometer calcium (ISE-K-CA)
bit differs a new bit is taken from either string with equal ISE interfaced to a PHM93 meter with a double junction
probability. This is illustrated iffrig. 2. sleeve type electrode (Radiometer REF251) as the reference.
Mutation is then applied to each new solution resulting The ionic strength of the calcium standard solutions was
from crossover. Each element within the new solution string adjusted with 5M potassium chloride. Ammonium nitrate
may randomly change with some given probability (usu- (10%) solution was used in the outer chamber of the refer-
ally less than 10%). Mutation was implemented so that it ence electrodes. Measurements were made according to the
decreases linearly with the number of generations. Muta- manufacturer’s instructions at room temperature and with-
tion helps prevent premature convergence of the algorithm out stirring. Between each measurement, the electrodes were
rinsed with distilled water and blotted dry with a tissue. The
data was collated in an Excel spreadsheet and estimates for
the non-linear parameters were calculated using the genetic
algorithm. An outline of the algorithm is given Fig. 1. The
GA was coded using C++ and details of the implementation
can be found elsewhef[&6]. The calculated values from the
genetic algorithm were used as starting estimates for non-
linear least square regression of E({d9.and (2). Non-linear
regression was performed using the “nls” command with R,
an open-source implementation of the S statistical language
[17].

3. Results and discussion

The GA was run three times to calculate estimates for the
Fig. 2. Half-uniform crossover. parameters of Eq¢1) and (2)with response data for a lead
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Table 1
Calculated parameter estimates by genetic algorithm, non-linear regression and bootstrap simulatiorffpaig$2)for a lead ion-selective electrode
pPb  Genetic algorithm Iterative non-linear regression lteration  Bootstrap
Ecs A B Ecp A2 B Ecp A B
Eq.(1)
2 —-139.3 0.086 0.3846 —139.2+0.1 0.01+0.01 0.40+0.01 4 —139.13+0.11 0.13+0.06 0.38:0.17
3 -163.8 6.12-6.36 0.002 —166.3+0.1 0.05+0.01 0.30+0.01 13 —165.64+0.08 0.114+0.02 0.32+0.02
4 1926 7.43 0.002-0.005 —193.8+0.1 0.18+0.02 0.44:-0.01 11 —194.09+0.22 0.10:0.05 0.4740.04
pPb  Genetic algorithm Iterative non-linear regression lteration  Bootstrap
Ece d k Ece d k Ece d k
Eq.(2)
2  -1393 239 0.13 —138.6+0.03 1.84:0.03 0.2/ 0.02 9 —138.71+0.34 1.85-0.34 0.23:0.04
3 -163.8 1.19-1.27 1.22-1.27 -165.2+0.05 2.314+:-0.04 0.19+t0.01 6 —165.16+£0.07 2.23:0.04 0.24-0.04

4 1926 1.0-27.0 2.24-32.64 —193.5+0.05 1.69£0.05 0.34-0.03 6 —193.74+£0.26 1.56:0.19 0.1A0.08

@ +Calculated standard error.
b Bootstrap estimates taken frdf0].

ISE immersed in standard solutioffable 1shows the range The genetic algorithm was applied to response data from
of the parameter estimates obtained from the GA. Note a sin-calcium and chloride immersed in standard solutions (ISEs)
gle entry inTable 1for the GA value means that the same in order to find parameter estimates for E¢k) and (2).
result was found with each run. These estimates were thenTable 2shows the parameter estimates found by the GA and
used as starting values for iterative non-linear least squareghose calculated by non-linear least squares regression for
regression. The calculated non-linear least square paramethe calcium ISE. Bootstrap simulated estimations were only
ter estimates for Eqg1) and (2)are also shown iffable 1. performed for Eq(1) parameter estimates. As with the lead
Note that the calculatefleq is denoted agicg for Eq. (1) ISE, the GA estimates for Eql) for the calcium ISE are
andEce for Eq. (2). For Eq.(1), the GA parameter estimates well within a decade of order with the non-linear least square
are well within a factor of those found with non-linear least estimates and those found from the bootstrap simulations.
squares regression. The parameter estimates from bootstrafimilar agreement is also found for the estimates for(EQ.
simulations are also shown ifable 1. Bootstrap simula- The results for the chloride ISE are showTable 3. Except
tions were used to determine the standard error estimates fofor the pCl 2.7 data, the GA estimates for Kf]) compare

the non-linear least square parameters for(Ejy.Bootstrap quite well to the non-linear least square estimates. Thisis also
methods are computer intensive statistical tools that providethe case for the parameter estimates of §. In contrast,
uncertainties for the parameter estimdtk319] by random there are differences between the GA estimates and those
sampling of the experimental data, over a large number of found by non-linear regression for the pCl 2.7 data. The stan-
times. The non-linear least square parameter estimates are ilard errors for the parameter estimates of Edfsand (2)
close agreement with those from the bootstrapping simula-for this data are also quite large. Inspection of the response
tions. The number of iterations required to reach convergencecurve (not shown) showed that the electrode had reached the
is reasonably modest where the maximum number of itera- equilibrium potential quite quickly and had not responded
tions was 13 for the 10* M standard solution. Thus, the use

of the GA values as starting guesses to the iterative algorithm t (min)

provided good non-linear parameter estimates that converged  -191 m p = n

quite quickly. The same result is found for EQ) where ' ’

the GA parameter estimates are reasonably close to those
calculated with non-linear regression. Additionally, the itera-

tive algorithm converged more rapidly to the global optimum _—
where the maximum number of iterations required was 9. As
with Eq. (1), the final non-linear least square estimates also
compare very favourably with the bootstrap simulated data. -193 1
Fig. 3shows the plot of expected values from each equation L
with the experimental data for the lead ISE immersed in a
10-4M standard solution. The expected values were calcu-
lated using the parameter estimates showiaisle 1. A good

fit of the response curve was found with both E¢iS.and

(2) with only a difference of 0.1 mV between each predicted Fig. 3. Plot of expected values from Ed4) and (2)with the measured
curve. potential for a lead ISE immersed in1DM standard solution.

E(mV

-194 4
¢+ Exp. — Eq1 ——Eq2
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Table 2
Calculated parameter estimates by genetic algorithm, non-linear regression and bootstrap simulatiorffpagg$2)for a calcium ion-selective electrode
pCa Genetic algorithm Iterative non-linear regression Bootstrap
Ecp A B Ecp A B Ecp A B
Eq.(1)
2 1185 0.22-0.26 0.002 12G6£20.1 2.29+ 0.15 —0.50+ 0.04 120.4-0.1 2.83£0.07 —0.63+ 0.17
3 147.0 0.1-0.11 0.21-0.22 1439.1 0.21+ 0.01 0.21+ 0.01 147.6:0.3 0.22+0.06 0.20+ 0.01
4 172.9 0.030-0.036 0.15-0.16 17%0.2 0.17+ 0.03 0.17+ 0.01 174.9-0.7 0.13+0.05 0.12+ 0.01
pCa Genetic algorithm Iterative non-linear regression
Ece d k Ece d k
Ea.(2)
2 121.7-121.8 421.3-873.3 12.5-15.9 120.4+0.1 289.0+ 46.8 10.8+ 0.8
3 147.0 0.37-3.45 0.16-0.17 148.1+0.1 3.61+ 0.13 0.53+ 0.04
4 168.3-177.6 4.91-9.89 0.04-1.83 175.7+0.1 4.46+ 0.25 0.59+ 0.06

in a way such as shown Iaig. 3. Thus, the likely cause for and the sum of squares of the absolute optimum. It is worth
this seemingly poor result would be due to a lack of fit of noting that the sum of squares of the absolute optimum
the equations to the pCl 2.7 data. In addition, there are alsocan never be achieved by the GA due to the discretisation
differences between the calculatBdg and Ecg values for of the parameter values to allow their representation as a
the pCl 3.2 data (approximately 10 mV). The reason for this binary string. The plots show the GA performed well with

is unclear. Nevertheless, the GA provided very good initial convergence to a near optimal set of parameter estimates
parameter estimates that were used for non-linear regressionwithin the defined maximum number of generations. It can
of Egs.(1) and (2)applied to the response data of three dif- also be seen that the algorithm performed slightly differently
ferent ISEs. It is likely that this approach could be used with with each run. This highlights the probabilistic nature of the
other ISEs but this would need to be verified. approach.

Fig. 4 shows the performance of the genetic algorithm  The maximum run time for the GA was approximately
for three independent runs using the response data of the caltwo minutes on a 3 GHz Pentium 4 processor. This is sig-
cium ISE immersed in 10 M standard solution. The genetic  nificantly more then a single run for the local optimiser, due
algorithm was run using the following settings: to the large number of evaluations of the objective function.
However, the benefit of using the GA becomes clear when
consideration of the quality of the initial guesses provided to
the local optimiseris taken into account. Much more time then
afew minutes can be spentwhen manually trying to determine
initial parameter estimates for the local optimiser that result
in successful convergence to the global optimum. For exam-

Plots are given for Eqg1) and (2). The plots show the ple, using initial parameter estimatesifaf,=-192.6,/=0.1
sum of squares (or ‘fitness’) of the fittest member of each (one-tenth of the GA value) arid= 2.24 for Eq.(2), applied
generation, the mean sum of squares for each generatiorto the 104 M Pb ISE response data, results in failure of the

e parameter range of 0.001-1000 (with a logarithmic scale),

e generation size of =50 with a maximum og =100 gen-
erations,

e encoding ofl =9 bits resolution per parameter,

e mutation rate of 5%.

Table 3
Calculated parameter estimates by genetic algorithm and non-linear regression d) Bgsl. (2)for a chloride ion-selective electrode
pCl Genetic algorithm Iterative non-linear regression
Ecp A B Ecp A B
Eq.(1)
3.7 132.0 —0.16 t0—0.25 —0.01t0-0.01 132.2+ 0.25 —0.21+ 0.02 —0.013+ 0.01
3.2 75.0 —0.039 —0.013 90.4+ 1.5 —0.011+ 0.001 —0.015+ 0.01
2.7 93.5 2.021t0 3.45 —0.01t0—-0.44 935+ 0.1 85.1+ 598 —20.65+ 149.5
pCl Genetic algorithm Iterative non-linear regression
Ece d k Ece d k
Eq.(2)
3.7 132.0 —-16.77 1.16to 1.27 130.6+ 0.3 —21.67+ 2.40 2.08+ 0.29
3.2 75.0 —37.18t0-51.48 0.50t00.76 79.3+ 04 —52.94+ 0.70 0.59+ 0.02

2.7 91.4 2.1 0 935+ 0.1 9.01+ 9.15 6.85+ 3.92
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Fig. 4. Genetic algorithm performance plots for the 1M calcium ISE response for three independent runs of the genetic algorithm foglEasd (2).

local optimizer. The GA though provided initial parameter 4. Conclusion

estimates, which quickly converged to the global optimum.

Considerable time savings can be achieved with use of the We have applied a GA to estimate parameters of empirical
GA compared to a user trying to find new initial estimates models for the response curve of a lead, calcium and chloride
that result in convergence. ISE. The algorithm gave results which were quite close to (if
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